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Abstract singular points of various ranks and the images of these

singular points is thus of importance.
The singularities of the differential kinematic map, i.e., The problem of determining the singularities of robot
of the manipulator Jacobian, are considered. We first ex- manipulators has received some attention. However, the
amine the notion of a "generic- kinematic map, whose problem in its full generality is difficult. Borrel and
singularities form smooth manifolds of prescribed dimen- Liegeois [4] have discussed the calculation of the set of
sion in the joint space of the manipulator. For 3-joint singular points when a specific manipulator is given, i.e.,
robots, an equivalent condition for genericity using deter- when all link parameters are known and the Jacobian ma-
minants is derived. The condition lends itself to symbolic trix can be computed numerically. They further show that
computation and is sufficient for the study of decoupled these sets may be used for computing the workspace of a
manipulators, i.e., manipulators which can be separated robot manipulator and for planning motions. While this
into a 3-joint translating part and a 3-joint orienting part. is useful for analyzing specific manipulators, it yields lit-
The results are illusttated by analyzing the singularities tie insight into the effect of various link parameter values
of two classes of 3-joint positioning rojbots. )< , on the singularities. Gorla [5] was able to get expressions

-,/ 'I - for the set of singular points by assuming that link twists
S ' ~ "were multiples of '. Recently, Pai [61 examined the sin-

1 Introduction - gularities of robot manipulators based on the genericity
of the kinematic map, and classified the singularities of

The kinematics of robot manipulators is of importance A separable manipulators. Burdick [7] presented a detailed

in almost all areas of robotics, including dynamics, con- ,\ analysis of singularities using screw theory. Burdick also
trol and motion planning. Of particular interest is the \ showed the significance of manipulator singularities in the

differential kinematic map, commonly known as the ma- design of robot manipulators.
nipulator Jacobian, which plays a central role in, among The remainder of this paper is organized as follows.

other things, trajectory planning, velocity and force con- Section 2 provides the definitions of relevant terms used in

trol, and the numerical solution to the inverse kinematics the paper. Section 3 introduces the concept of a "generic"

problem. kinematic map, and examines the properties of the singu-

Since the Jacobian is the best linear approximation to larities of such maps. In Section 4 we derive an alternate

the kinematic map at a configuration, the manipulator's criterion for genericity. This criterion is easy to apply and

performance is profoundly affected by the value of the can be used for 3-joint manipulators with a 3-dimensional

Jacobian. In particular. if the Jacobian is non-singular, task space. The utility of the criterion is illustrated in

the Implicit Function Theorem [1] of differential -alculus Section 5. where it is used to analyze the singularities of

guarantees a smooth right inverse to the kinematic map PPR manipulators and SCARA type manipulators.

locally. However, if the Jacobian is singular, the kinematic
map may not be smoothly invertible. 2 Preliminaries

Further, the singular manipulator can not impose any
velocities of the end-effector reference frame in certain In the following, a robot manipulator is taken to be any
directions. This causes local control methods such as Re- open linkage, i.e., a sequence of rigid bodies connected by
solved Rate Control [2] and Operational Space Control (3] joints, which are assumed to be either prismatic (sliding)
to fail at a singularity. The robot is also able to withstand, or revolute (turning).
in principle, infinite forc-s along the same directions. The
rank of the Jacobian is the number of degrees of freedom Definition 1. The joint space .7 of a manipulator is
the end-effector of the manipulator has locally. Hence, the space of all joint variables (qi, q2, .... q.) of the ma-
the lower the rank of the Jacobian, the more constrained nipulator. The variables are defined in the usual sense of
is the motion of the end-effector. Determining the sets of Denavit and Hartenberg (8].
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If the nanipulator has r revolute joints and n - r pris- The derivative Dqa of the kinematic map at a config.
matic joints, the joint space is actually 7' x R , where uration q is a linear map from the tangent space of J at
T' is an r-tors, T7 ' =S'x...x5'. This is due to the fact q to the tangent space of C at o(q). When represented
that a rotation of qi +2x is equivalent to a rotation of q;. as a matrix in coordinates, it is commonly known as the
Since the distinction is not important for our purposes, manipulator Jacobion. The Jacobian matrix may be con-
we shall consider 3 to be R", the space of n-tuples of real veniently computed by the vector cross-product method
numbers, with the understanding that qi + 2k" a qj. We (2] and other methods.
shall denote by q = (q, q2 ... q,,)T a point in the joint The matrix is written as
space '. The joint space is a configuration space, i.e., by ()
specifying q we completely specify the configuration of Dqa = Dqar (4
the robot. Hence, we will speak of q as a configuration of
the robot. where

A robot manipulator's motion is typically required in
terms of the motion of a reference frame E attached to the Dqa, = (Uozo × pa + d'oZo
manipulator. This is usually a coordinate frame attached u,,.-z,_. X P.-L + C W-1Z ._) (5)
to the end-effector of the manipulator [9]. Dqs, = ( 4OZO ... u,_tz,._.Z,

Definition 2. The task space X of a manipulator is the
space of all required rigid motions of E. 0 0 if joint i + 1 is prismatic

The task space is so called because it is the space in 1 if joint i + I is revolute

which the task is specified. For typical 3-dimensional d J 0 if a. = I
tasks, the task space is the 6-dimensional space of rigid 1 if ai = 0
translations and rotations. This space is the manifold
H' x 30(3), where 50(3) is the manifold of the Special Also, zi is the unit vector along the axis of joint i + 1 and
Orthogonal Group (the group of 3-dimensional rotationp the vegof por on ate a me E.
This will be our default task space. However, the task he in of th e aseto corine fra E bspace is actually defined by the application. For example, The kinematic map is easily derived for typical robot
if one is only interested in the translation of the end- manipulatuos, for instance by using homogeneous trans-efector in the plane,ste theask space is . An element of formations. The Jacobian can be obtained in many casesthe task space is calld a generalized position, or simply by simply differentiating the kinematic map. Paul [9]othe n task otpe ththis caled & hgeneraved o tionapl offers a method for computing Dqx using homogeneous
position. Note that this may have both a translational transformations.
part belonging to R' and a rotational part belonging to
30(3). This is not standard terminology, since none exists Definition 4. A manipulator is said to be singular at a
at the present time. In the literature, positions have also configuration q if Dqr is singular, i.e., if it is not of max-
been called locations, displacements, motions, configura, imal rank. The configuration q is then called a singular
tions, transformations, etc., which unfortunately convey point and its image P(q) is called a singular image.
different meanings to different readers.

The kinematics of the manipulator defines a map from Some authors also call a singular point a critical point
the joint space to the task space. and a singular image a critical value, especially when deal-

ing with real-valued maps. A point in J is called a regular
Definition 3. The kinematic map of a manipulator is point if it is not a critical point. A point in I is called a
the map a : 3" - X, which maps a configuration q of the regular value if it is not the image of a singular (critical)
robot to the position of the end-effector reference frame point.
E. In this paper we shall always assume that the dimension

of 3 is at least as large as that of K, i.e., we shall deal with
The map can be considered to be the cartesian product manipulators with at least as many degrees of freedom as

of two maps, required by the task. Hence, a configuration q is singular
if and only if rank (Dqx) is less than the dimension of=(1) K

where
:3- R (2) 3 Singularities of Generic0

and, (3). (3) Mappings

x, will be called the translation map and oc, will be In this section we introduce the important concept of
called the rotation, or orientation, map. genericity of a smooth mapping and related results from

'The symbol 0 T denotes the transpose 2Usually taken to be the origin of Link i's coordinate frame.
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the field of differential topology, and demonstrate their Definition 6. A kinematic map K of a manipulator is
relevance to the singularities of kinematic maps. In gen- generic ' if Dr iff {(Ci. We shall call a manipulator
eral, the types of singular sets that can occur depend on generic if it has a generic kinematic map.
the actual mapping. Of particular interest are mappings
whose singular points form smooth manifolds in the do- Proposition 1. Let S, C J7 be the set of all singular
main. Smooth manifolds have several important proper- points of rank r and let s : 7 - K be generic, with
ties, including the fact that they can be traced out by dim(,7) = j and dim(K) = k. Then, S, is a smooth
local methods. submanifold of J. Further, if S, is not empty

Generic mappings constitute a large class of mappings codi(S,) r)(k - r). (10)
whose singular points form smooth manifolds. In fact,
almost all smooth maps are generic. The book by Golu- Proof. Since ic is generic, Dic ? C,, codim(C,) = (j -

bitsky and Guillemin [10] provides more information for r)(k - r). From the Preimage Theorem, S, = Dt 1 (,C.)
the reader. Elementary definitions of smooth manifolds, is a smooth manifold of . and codim(S,) = codim(,) =
tangent spaces, etc., can be found in textbooks on differ- (j - r)(k - r). 3
ential topology such as (1]. Proposition 1 may be used to determine the dimen-

Let C be the space of all linear maps from the tan- sion of sets of singular points of generic kinematic maps.
gent space to J7 at q, denoted Tq.7, to the tangent space Observe that one way for x to be generic is to have no
to K at X(q), denoted Tx(q)K. Let dim(.7) = i and singular points at all. In this case, all 5, for r < k will be
dim(K) = k,. With local coordinates on J anrd K, C is empty. The above proposition describes the dimension of
isomorphic to the space of k x j matrices. Note that Z S, when it is not empty. The proposition also allows us
is a vector space under scalar multiplication. and addition to preclude the existence of generic singularities of certain
of matrices, isomorphic to Rik. low ranks. If (j - r)(k - r) > j, then the codimension of

We denote by 4, the set of points it C of rank r. It S, is greater than the dimension of the joint space. Hence
is well known that each £, is a manifold with codim(4,) a rank r singular point can not exist.
= (j - r)(k - r), where codim is the codimcnsion of a We examine three examples of singularities of generic
submanifold in its containing manifold. Thus the C, par- kinematic maps below.
tition C, i.e., with u = min{j, k), Example 1: A 3-joint generic manipulator used for

4 U t U... U 4C = C, (6) translation only or orientation only. Here the di-
mension of the joint space i is 3 and the dimension

and of the task space k is also 3. Hence, if s2 is not
C, f C. = 0 for r s. (7) empty, dim (S2 ) = 2, and both St and So have to

Further, the limit points of C, rot in it are in some C., s> be empty. Therefore, only the rank 2 singularity is

r. Such a set of manifolds is called a "manifold collection". possible.

Example 2: A 6-joint generic manipulator used for both
Definition 5. Let f : M - A be a smooth map between translation and orientation. Here the dimension of
manifolds M and MN. The map f is transversal to a sub- the joint space is 6 and the dimension of the task
manifold U of.%( if and only if for each point z E f- (U) space is also 6. Hence, if singularities of ranks 4 and

5 exist, dim (Ss) = 5, dim (S 4 ) = 2, and the smaller
Image(D~f) + Tf(.)U = Tf(,)AK. (8) rank singular sets are empty.

Also, f is transversal to a manifold collection ({C} in A( Example 3: An 8-joint generic manipulator used for

if and only if f is transversal to each i. both translation and orientation. This robot is re-
dundant and has two extra degrees of freedom. Here,

We write f (T U to indicate that f is transversal to u. if the manipulator can become singular, dim (Ss) =
Transversality is one of the most important concepts in 5, dim (S4) = 0 and smaller rank singularities can
differential topology. We note some of the applications not occur.

below.

Theorem 1 (Preimage Theorem) Let f, M, A( and 4 A Condition for Genericity
U be as above. Then the preimage t' (U) is a submani- We saw in Section 3 that generic mappings possess several
fold of A and desirable properties. However, it is difficult to determine

codim (f - ' (U)) = codin(U). (9) if a map is generic using only the definition of genericity.
In this section, we derive an algebraic criterion for deter-

The Jacobian Dqx is a linear map from TqJ to T(q)X. mining if a 3-joint robot (j = 3) in a 3-dimensional task
We can view the collection of Dqc, for all q E J7, as a space (k = 3) is generic. This criterion lends itself well
map from J to the space of linear maps from TqJ. to
TKiq)K, viZ., I. We will denote this by Dic : ' - Z , 'Also called one-generic, to distinguish it from genericity
with Da(q) as Dqor. The map Dc is smooth. with respect to higher derivatives.



to symbolic computation, and has been implemented in Proof. Let di. be an element of Dr and d, be a column.
MACSYMA.

The restriction to 3-joint manipulators does not limit 'r, det d1 ... d,]I6)
us in analyzing the singularities of many general spatial Iq

manipulators. Almost all current manipulators can be = S'det [d4 ... k8d,.... 4]~
decoupled into a 3-joint translational part and a 3-joint q
orienting part (see Appendix B). The translational part
corresponds to the large links towards the base of the = E Z(kdm) cofactor(di,")
manipulator, while the orienting part corresponds to the I m q
small terminal links that constitute a wrist. Our result " D ) q
will allow us to analyze each part separately. q

0
Lemma 1. Let A = (aim) be a n x n matrix, and A* be We now use these facts to show the main result of this
the matrix of cofactors of A. A and A* E C, where C is section.
the space of n x n matrices. Let det : C - R be the
determinant function. Then Theorem 2. For a 3-joint robot, with a 3-dimensiona

task space,
DA det = A*. (r.) K is generic if and only if V q such that

det(Dq) = 0,
Proof. Let at be the 1, m element of A. Therefore, the Dq det(Dr) 6 0
determinant of A can be written as

Proof. By definition, r. is generic if and only if Dx X
det(A) = atmcofactor(atm) + terms not involving atm. {£},i = 0, 1,2, 3. Dr is obviously transversal to £3.

(12) Now, codim(-o) = 9 and codim(£t) = 4, while dim(TqJ)
Therefore, = 3. Therefore the only way for Dr to be transversal to

Co and C, is to avoid them altogether. Hence
Z.det(A)= oatra .(3

et() = cofactor(a). (13) genericity * (a) Only rank 2 singularities can occur
ANDHenceAD

DA det = (cofactor(aln)) = A*. (14) (b) Dr I2

First look at (b). Let q E Di-I(£2 ). Dr 7j £2

When j = k = n, C is a manifold isomorphic to R2. 3v E T,7 such that (DqDr)(v).Dqr $ 0. Note that

We have seen that £,--, the set of all matrices of rank Dqir is the normal to £C at Dqr, from Lemma 2. This

n - 1, is a submanifold of C with codimension (n - (n- is equivalent to

1)n- (n-I1)) = 1. Hence, there is a one-dimensional (3

vector space normal to the tangent space of Cn-. With (a D) V iDqr $ 0,
the identification of C with R"2 , a vector in C is just , Iq 0)

another n x n matrix. i.e.,

Lemma 2. The normal subspace to C,-t at A E C,-i ' ((k Dsr) j.Dq.*) v, 6 0,
is spanned by DA det = A'. it

i.e.,

Proof. Since C,_I is a singular set, det(A) = 0. Further, for some i, ( Dc) Dq' 0,
since A is of rank n - 1, at least one cofactor of A $ 0. ) lq
Therefore, DA det = A* $ 0. So 0 is a regular value of from Lemma 3,
the function det. Hence, locally C,-L is an n2 - I surface for some i, ' det(D r) 6 0,
and DA det $ 0 is normal to it. C i5e.

In the proof of the theorem below, we use the following
identity which relates derivatives of determinants in C to Dq det(Dic) 0 0.
derivatives in .7. Now (a) is equivalent to the condition that Dq" j 0

for all q E ,7. This is because each 2 x 2 submatrix of
Lemma 3. Dqsr is an element of Dqer; if they are all zero, Dqoc

has rank less than 2. Clearly, Dq." t 0 when the robot
(To D) J -Dqur ( detD) (15) is non-singular. When the robot is singular, i.e., when

.q 9 det(Dqoc) = 0, if Dq det(Dr) # 0, there exists an i such

where. is the usual inner product in !R"3. that (kDi) jq.Dqa °$ 0. Hence Dqi 0
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Corollary 1. For 3-joint robots, genericity implies that The case of at cos a. = 0 is trivial, since the manipulator
the set of singular points is either empty or a regular level is always singular. Hence we only need to analyze the
surface of dimension 2. factor (a, sin 92 - sin a2d3 cos 02).

From Theorem 2, the kinematic map is non-generic if
and only if there is a simultaneous solution to the follow-

5 Examples ing equations:

The genericity condition of Theorem 2 has many applica- a2 sin 02 - sin a 2 d3 cos 02 = 0, (21)
tions, including the classification of singularities for sep..
arable manipulators (see Pai 6]). In this section, we a2 cos 92 + sin ctds sin 92 - 0, (22)
present only two examples to illustrate the utility of the sin a2 cos02 = 0. (23)
condition. First, we show that the singularities of all non-
trivial PPR positioning manipulators are generic. Second, Hence the manipulator is non-generic if and only if a2 =
we derive a necessary and sufficient condition for gener- 0, i.e., if and only if the axes of joints 2 and 3 intersect.
icity for a SCARA-type positioning manipulator (i.e., an
RRP manipulator with the first two revolute joints par-
allel). Appendix A describes the notation used in this 6 Conclusions
section for the kinematic parameters, which is similar tothat of Paul [9. Some results from differential topology were applied to the

manipulator singularity problem. We showed that for the
class of generic robots, important information could be5.1 PPR manipulator singularities obtained about the ranks of the possible singularities and

This manipulator has two prismatic joints followed by a the differential topology of the set of singular points. We
terminal revolute joint. The joint variables are dr, d2 , and saw that for generic robots, the set of singular points of
03. The expression for the determinant of the Jacobian rank r are smooth manifolds in joint space of codimension
simplifies to: (j - r)(k - r), where j is the dimension of joint space and

k is the dimension of task space. This result also allows
det DqKc = a3 sinat (cos92 sin 93 +cosa2 sin 92 cos 0). us to automatically exclude certain low-rank singularities

(18) from occurring in generic robots. Hence by designing a
The factor a3 indicates that if a3 = 0, the end-effector robot to be generic, we can eliminate singularities of low

point lies on the axis of revolution of joint 3. Joint 3 rank.
can not contribute any translational velocity to the end- Since generic singularities are so well 1,ehaved, the ques-
effector in this case. Also, sin at = 0 makes the two pris- tion naturally arises: what types of robots are generic?
matic joints parallel. Therefore, unless the manipulator is Genericity was originally defined in terms of transversal-
always singular, a3 sin at $ 0. The only interesting factor ity of the map Dr to a manifold collection in the space
is cos 02 sin 03 + cos a2 sin 82 cos 03. £ of all k x j matrices. This definition is not well suited

Unless it is identically zero, the zero sets of Equa- for determining the values of the kinematic parameters
tion 18 are singular planes in the dt-d 2 -93 space, at which cause the manipulator to be generic. An equiva-
63 = tan - (- cos a2 tan 07), separated in e3 by ir. These lent condition for genericity of 3-joint manipulators in a
are generic since 3-dimensional task space was derived (Theorem 2). The

condition uses the determinant of the Jacobian and its
Dq det Die derivatives, and is amenable to symbolic computation. It0 is directly applicable to the common class of robots which

a ( sin 0 2 can be decoupled into a translating part and an orienting
cos 2 art. All 6-joint manipulators with a so-called "spherical

- 0, (19) wrist" are of this class. The condition for genericity can
be used to analyze the singularities of such robot manip-

when Equation 18 is 0. Hence all non-trivial singularities ulators, as demonstrated in Section 5.
are generic.
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important feature of the coordinate frame of link i is that
the unit vector zi is aligned with the axis of joint i + 1.

joint i joint I + 1 If joint i + 1 is revolute, a right hand rotation about zi
corresponds to a positive rotation of Oi+'; if the joint is
prismatic, a displacement along zi corresponds to increas-

fink i ing d,+1.

B Decoupling
We have seen that an n-joint robot operating in the task

a/ ai a space R x SO(3) is singular if and only if the 6 x n Jaco-

bian matrix Dqtc is singular. It is clear that the singular
points of the two 3 x n matrices Dqn, and Dqxr are
subsets of the singular points of DqK. A question that/ naturally arises is: can the translation and rotation sin-
gularities be decoupled? The answer is generally "no".
However, for certain extremely common manipulator de-
signs, the decoupling is possible [11].

Consider a 6-joint robot in which the last 3 joints
are revolute and intersect at a point W. This design is

Figure 1: Kinemat ic parameters of a link widespread since it makes the inverse kinematics solution

in closed form tractable ' [12]. For such a manipulator,
we can take p3 = P4 = ps = vector from W to the end-U03-8300, NSF grant DMC.86-17355, and by ONR grant effector origin. Now,

N00014-86-K-0281 during the preparation of the paper.
Dqt -= (ao zo x p0 L"fo zo .

Appendices Z3 X PS ... ZS X PS). (24)

A Kinematic Parameter Con- Hence, DqK can be written as

vention Dq = ) I x

The convention used for the kinematic parameters of ( foZo X Po' + doZo ... a2Z2 X P2' + ff2Z2

robot manipulators is that of Paul [9] and is based on the zo ... Z2

work of Denavit and Hartenberg [8]. Figure 1 summarizes 0 ...

the convention. Z3 Z4 z) (25)
Each joint is assigned an axis. For a revolute joint, the

axis is uniquely defined as the axis of revolution of the where
joint. In the case of prismatic joints, only the direction of ( 0 -Ps. PS(,
the axis is uniquely defined and the axis is taken to pass [Psi = Ps. 0 -Pst , (26)
through any convenient point. The links are numbered -Ps , P3. 0 /
starting from 0 for the base (fixed) link. The joints are I is the 3 x 3 identity matrix and the pi' are vectors from
numbered starting from 1 for the first joint, a point on the axes of joint i+ 1 to W. Therefore, Dqx is

a,: The length of link i, defined as the shortest distance singular if and only if
between the axis ofjoint i and the axis of joint i + 1. ( zo XpO' + O ZO ... 2Z2 X P2 + O2z2 )

ai: The twist of link i, defined as the angle between the or (2T)
axis of joint i and the axis of joint i+ 1. ( za z3 Z )

d: The offset of link i, defined as the distance along the is singular.axis of joint i, between the foot of the common nor- i iglr
meal to joint i- 1 and the foot of the common normal Therefore, such a manipulator can be treated as two

to joint i -. separate manipulators. The first 3 joints constitute a
to joit i + 1. translating robot, used to locate the wrist point W, and

9.: The angle of joint i, defined as the angle between the the last 3 joints serve as an orienting robot. The singu-
common normal to joint i-I and the common normal larities of these "sub-manipulators" can be studied sepa-
to joint i + 1. rately.

It is also customary to associate a coordinate frame
with each link. Reference [9] describes the specification 4 A fact linked to the decoupling of the translation and ro-
of the link coordinate frames. For our purposes, the most tation functions of the manipulator.
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